
SLATE Access Control Policy and
Procedures

Version Comment Effective date

1.0 In draft Mar 11, 2022

Purpose 2

On- and Off-Boarding Platform Administrators 3

SLATE Platform Components 3
Repositories and Registries 3

SLATE Platform and Helm Chart Repository 3
GitHub 3

Container Image Registries 4
DockerHub 4
OSG Harbor 4
GitHub Container Repository 5

Core Services 6
Cloud Core Services 6

Amazon Web Services (AWS) 6
Identity and Access Management: AWS credentials for management 6
Database: DynamoDB 6
DNS: Route53 6
Storage: S3 7

On-premise Core Services 7
SLATE API 7

SLATE API Service 7
SLATE API server 7

Key distribution 8
Key repository 8
Configuration and automation: 8

This document is a policy of the SLATE (Services Layer at the Edge) project, supported by the National Science
Foundation Office of Advanced Cyberinfrastructure: "CIF21 DIBBs: EI: SLATE and the Mobility of Capability", award

number OAC-1724821.
1

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1724821&HistoricalAwards=false

Monitoring stack 9
Logging and Visualization 9
Alerting and Passive Monitoring 9

Checkmk 9
Active Monitoring 10

perfSONAR 10
PerfSONAR Web Admin (PWA): 10

Development Environment 10
SLATE Development Virtual Machines 11
Continuous Integration/Continuous Deployment (CI/CD) 11

Jenkins CI/CD service 11
GitHub Actions 11

Individual Developer Tools and Prototype Tools 12
MiniSLATE 12
SLATE-lite 12

SLATE User Facing Services 12
Web presence 12

Website 12
SLATE User Portal 13
SLATE Command Line Interface (CLI) 13
SLATE Sandbox 13

SLATE Communication 14
Email Lists 14
Real-time chat 14
Video content 14
Shared presentation, tutorial and file repository 14
Overleaf 15

Purpose
SLATE team members require various levels of access to central components of SLATE. This
document describes the location of each component and how different member roles obtain
access. The Overview of SLATE Platform Internals and Security architectural document1

describes the relationships and interactions of the various components.

1 Overview of SLATE Platform Internals and Security architectural document:
https://docs.google.com/document/d/11IzFGkoTis4KOLmwThpWSHZ5NFEhau1T/edit?rtpof=true

Page 2 of 15

https://docs.google.com/document/d/11IzFGkoTis4KOLmwThpWSHZ5NFEhau1T/edit?rtpof=true

On- and Off-Boarding Platform Administrators
The SLATE project provides on-boarding documentation to acquaint new team members with
essential services, systems and processes. During this period new team members are granted
access to systems with appropriate role-based permissions. For team members departing the
project, there is an off-boarding process to revoke all privileges. For some individuals leaving
the project, continued access may be granted for future collaboration and project continuity
purposes. The SLATE project will perform a periodic review of team member access with the
SLATE principal investigators (PIs).

The on-boarding process requires Multi-Factor Authentication (MFA). The SLATE team
configures MFA for each service and component that can support it. For service accounts
which do not support MFA, the SLATE team makes other provisions, such as tokens.

SLATE Platform Components

Repositories and Registries
The SLATE project utilizes several repositories and registries for hosting the codebase of the
SLATE Platform and for applications which SLATE (co-)manages or references. Each
repository and registry accommodates different aspects.

SLATE Platform and Helm Chart Repository

GitHub
The SLATE Platform and Helm chart repository resides in GitHub . The SLATE principal2

investigators and senior SLATE team members (with coordination of the SLATE PIs) grant
access to the repository for creating, editing, and modifying the SLATE Platform components.
The access to the repository also allows the modification of the SLATE Helm charts for
applications.

● Where maintained: The SLATE git repository for the software and applications resides at
the public SLATE GitHub.

● Granting/Revoking access: The SLATE Project PIs or SLATE Operational team
members designated as GitHub repository owners grant/revoke access based on review
of need of collaboration level with the SLATE team. Senior SLATE Operational team
members consult with SLATE PIs prior to adding members.

● Credentials:
○ Password: The SLATE GitHub repository requires individual password

authentication to access the site.

2 SLATE Platform GitHub instance: https://github.com/slateci

Page 3 of 15

https://github.com/slateci

○ Multi Factor Authentication: The SLATE GitHub repository requires multi factor
authentication as defined/allowed by GitHub .3

○ Token access: The SLATE CI/CD infrastructure utilizes token access for
automation of the CI/CD pipeline.

Container Image Registries
The SLATE project uses multiple container registries for container images. SLATE team
members and the SLATE CI/CD infrastructure both access each of these resources in different
ways, as explained below.. The three main image registries are the following:

● DockerHub
DockerHub provides the primary mechanism for accessing general community images
and base OS container images. Several science applications also maintain their
container images on Docker. SLATE has maintained the bulk of its images on Docker as
well.

○ Where maintained: SLATE uses the public DockerHub for access to some4

container images.
○ Granting/Revoking access: The SLATE PIs or SLATE Operational team owners

review and revoke authentication and authorization for write privileges of images
maintained by the SLATE team. Read access and pull access is public.

○ Credentials:
■ Password/Token Access: The DockerHub registry requires individual

password authentication to access the site for putting up containers. The
DockerHub registry does not require passwords for reading.

■ Multi Factor Authentication: The DockerHub registry currently does not
require multi factor authentication.

■ Token access: The SLATE CI/CD infrastructure uses token access with a
SLATE service account to push/pull images.

● OSG Harbor
OSG Harbor is an image container repository which focuses on distribution of scientific
containers, such as those maintained by the Open Science Grid community. SLATE is
migrating many of its images there too.

○ Where maintained: SLATE uses the OSG Harbor repository for science-based5

applications.
○ Granting/Revoking access: The SLATE PIs or SLATE Operational team owners

review and revoke authentication and authorization for write privileges of images
maintained by the SLATE team. Upon review with the SLATE PIs, OSG sets up

5 OSG Harbor repository: https://hub.opensciencegrid.org/
4 Dockerhub: https://hub.docker.com/

3 GitHub 2 Factor Authentication:
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/config
uring-two-factor-authentication

Page 4 of 15

https://hub.opensciencegrid.org
https://hub.docker.com/
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication

one of the following roles for the individuals: maintainer, developer, user, guest,
limited guest, or project. Read access and pull access is public.

○ Credentials:
■ Password/Multi Factor Authentication: SLATE team members access the

OSG Harbor registry using federated authentication via CILogon, using
their respective home institutions’ credentials. This mechanism allows the
user access to the site for putting up containers for use with the SLATE
catalog. The OSG Harbor registry does not require authentication for
reading the containers. SLATE team members’ home institutions require
MFA on all federated logins.

■ Token access: The SLATE CI/CD infrastructure uses token access
associated with a SLATE service account in OSG Harbor to push/pull
images

● GitHub Container Repository
SLATE has used the GitHub Container Repository for a handful of images in support of
the SLATE infrastructure.

○ Where maintained: SLATE uses the GitHub Container Registry located as a6

service of GitHub.
○ Granting/Revoking access: Upon consultation with the SLATE PIs, the SLATE

team reviews and revokes authentication and authorization for write privileges of
maintained images. These privileges tie directly to the permissions of the GitHub
slateci user in the slateci organization. Read access and pull access is public.
Any repository in the slateci organization has read/write capabilities to the
repositories.

○ Credentials:
■ Password: SLATE team members access the GitHub Container Registry

with GitHub accounts. These only require password authentication to
access the site for writing containers. The GitHub Container Registry
does not require passwords for reading containers.

■ Multi Factor Authentication: The GitHub Container Registry requires multi
factor authentication.

■ Token access: The SLATE CI/CD infrastructure uses token access
associated with a SLATE service account in the GitHub Container
Registry to push/pull images.

6 GitHub Container Registry: https://ghcr.io

Page 5 of 15

https://ghcr.io

Core Services

Cloud Core Services
The SLATE project currently uses Amazon Web Services (AWS) cloud services for certain7

central services.

Amazon Web Services (AWS)

● Identity and Access Management: AWS credentials for management
○ Billing: The SLATE main PI at the University of Chicago has responsibility for all

billing.
○ Grant/Revoking Access: The SLATE main PI and senior University of Chicago

SLATE personnel review and grant access to AWS services as needed by the
project.

○ Credentials:
■ Password: SLATE team members login to the AWS Identity and Access

Management (IAM) service using an IAM account requiring password
authentication to access the site.

■ Multi Factor Authentication: The AWS Identity and Access Management
requires multi factor authentication.

■ Token access: The AWS Identity and Access Management provides
token access for some of the AWS services. The University of Chicago
SLATE PI and Operational staff review and setup token access for the
AWS services based on need.

○
● Database: DynamoDB

○ Purpose: The DynamoDB retains all data for the SLATE API server.
○ Grant/Revoking Access: The SLATE main PI and senior University of Chicago

SLATE personnel review and grant access to AWS services as needed by the
project.

○ Token access: The University of Chicago SLATE PI and Operational staff review
and setup token access for the DynamoDB server based on need.

○
● DNS: Route53

○ Purpose: SLATE uses the AWS Route53 DNS service for inserting slateci.io DNS
records, both forward and reverse. SLATE also uses Route53 for other DNS
informational entries

○ Grant/Revoking Access: The SLATE main PI and senior University of Chicago
SLATE personnel review and grant access to AWS services as needed by the
project.

7 Amazon Web Services (AWS): https://aws.amazon.com/

Page 6 of 15

https://aws.amazon.com/
https://aws.amazon.com/

○ Token access: SLATE scripts utilize AWS tokens for Route53 to automate DNS
entries. The University of Chicago SLATE PI and Operational staff review and
setup token access for the Route53 service based on need.

● Storage: S3
○ Purpose: SLATE uses AWS S3 storage to store backups for DynamoDB which

hosts the SLATE API database. The backups happen once a week.
○ Grant/Revoking Access: The SLATE main PI and senior University of Chicago

SLATE personnel review and grant access to AWS services as needed by the
project.

○ Token access: SLATE stores the S3 credential on the API server for use with the
backup process. The University of Chicago SLATE PI and Operational staff
review and setup token access for the S3 service based on need.

On-premise Core Services

SLATE API

SLATE API Service

The SLATE API service, which runs on the SLATE API server, manages the central database,
and federation information. The SLATE API service also provides the central interface for the
SLATE Client, portal and other tools which manage the deployment of applications across the
federated environment. The SLATE API service also provides the policy interface for user /
group role access. See Section 7 of the “Overview of SLATE Platform Internals and Security”
document for more information.

● Where maintained: The SLATE API service resides on the dedicated SLATE API server
virtual machine at the University of Chicago:

● Granting / RevokingAccess: For a cluster administrator to access the SLATE API server,
the administrator obtains a SLATE token. The cluster must be part of a SLATE group
registered through the SLATE portal. Groups are part of existing Virtual Organizations or
are a stand-alone Resource Provider site dedicated to providing resources for Virtual
Organizations.

○ Dynamo DB credentials allow extraction of all data though most data encrypted
by key on SLATE API server. These credentials require sudo or root access

● Token access: SLATE cluster administrators obtain a SLATE token by following the
process described in “Obtain a SLATE token” . This token also gives access to the8

SLATE REST API.
○ A root token/superuser token exists that can access any API object.

SLATE API server

● Where maintained: The SLATE API server resides on a virtual machine at the University
of Chicago.

8 Obtain a SLATE token: https://slateci.io/docs/cluster/manual/slate-token.html

Page 7 of 15

https://slateci.io/docs/cluster/manual/slate-token.html
https://slateci.io/docs/cluster/manual/slate-token.html

● Granting / RevokingAccess: The SLATE API server has limited ssh access to the server
virtual machine granted by the University of Chicago SysAdmin team with permission by
the SLATE Principal Investigator. The SysAdmin team manages ssh access via key
access. (see key distribution)

Key distribution

● Key repository

SLATE maintains a key repository for user access to SLATE project servers.
○ Where maintained: The Mid-West Tier2 group manages a GitLab server on a

virtual machine at the University of Chicago. This GitLab server hosts a SLATE
project instance to which SLATE project members have access. This project
instance stores the user keys for the SLATE Puppet instance.

○ Granting/Revoking Access: Mid-West Tier2 SysAdmins manage this GitLab
server. They are able to add/remove SLATE members to the SLATE project with
per-user keys to the SLATE project upon request by the SLATE PIs or senior
SLATE personnel.

● Configuration and automation:

SLATE maintains a Puppet server for configuration and automation. The SLATE Puppet
server distributes keys for users to the API server and for access to the development
virtual machines and physical machines.

○ Where maintained: The SLATE Puppet server resides on a virtual machine at the
University of Chicago.

○ Granting/Revoking Access: The University of Chicago MANIAC SysAdmin team
manages the SLATE Puppet server and adds/removes individual people to
Puppet with per-user keys upon request via SLATE PI or senior SLATE
personnel.

SLATE uses Ansible and Kubespray for automated deployment of Kubernetes. This9 10

deployment technique happens at the site and does not require a specific server.11

○ Where maintained: The automated deployment happens at the local site by the
local SLATE cluster administrator.

○ Granting/Revoking Access: The local SLATE Cluster administrator provides all
access to the cluster

○ Token access: As part of the installation, the local SLATE Cluster administrator
will register the new STATE cluster by obtaining a SLATE token for federation.

11 SLATE Kubernetes automation: https://slateci.io/docs/cluster/automated/introduction.html
10 Kubespray: https://kubespray.io/#/
9 Ansible: https://github.com/ansible/ansible

Page 8 of 15

https://about.gitlab.com/
https://puppet.com/it-automation/
https://github.com/ansible/ansible
https://kubespray.io/#/
https://slateci.io/docs/cluster/automated/introduction.html
https://slateci.io/docs/cluster/automated/introduction.html
https://kubespray.io/#/
https://github.com/ansible/ansible

Monitoring stack
The SLATE Monitoring stack comprises logging, alerting, passive monitoring, and active
monitoring for each of the SLATE project clusters. Other SLATE clusters can request the
addition of their clusters to this central monitoring.

Logging and Visualization
SLATE uses Elasticsearch/Logstash/Kibana (ELK) stack for its central logging/visualization.12

For local logging of a site
● Where maintained: The SLATE ELK stack resides at the University of Chicago as part

of the WLCG monitoring stack.
● Granting/Revoking Access: For viewing, a web portal exists that allows some

anonymous views. For modifications, members of the WLCG monitoring group make
changes or add/revoke additional participants in consultation with the SLATE PIs.

● Credentials:
○ Password: The ELK stack currently uses only passwords for authentication.

Alerting and Passive Monitoring
SLATE uses Checkmk for its Alerting and Passive Monitoring. Checkmk relies on a13

combination of probes and SNMP polling for its alerting and passive monitoring. The SLATE
project sites each run a local instance of Checkmk which monitors locally and reports to a
central Checkmk instance at the University of Michigan.

Checkmk

● Where maintained: The SLATE Checkmk central service is at University of Michigan,
with local instances at the University of Utah and University of Chicago.

● Granting/Revoking Access: University of Michigan system administrators grant/revoke
access for modifications to the central instance of checkmk. University of Michigan
system admins work with University of Utah and University of Chicago system
administrators to grant/revoke access to the local instances respectively.

● Credentials:
○ Password: Each Checkmk site maintains individual local usernames for admin

and operator roles. The respective users only have access to the Checkmk
service and not the underlying server.

13 Checkmk: https://checkmk.com/
12 Elastic ELK stack: https://www.elastic.co/what-is/elk-stack

Page 9 of 15

https://www.elastic.co/elastic-stack/
https://www.elastic.co/logstash/
https://www.elastic.co/kibana/
https://www.elastic.co/what-is/elk-stack
https://wlcg.web.cern.ch/
https://checkmk.com/
https://checkmk.com/
https://www.elastic.co/what-is/elk-stack

Active Monitoring
SLATE uses perfSONAR for its Active Monitoring. The perfSONAR monitoring provides14

feedback on bandwidth and latency capabilities. Each new SLATE site has the ability to run a
perfSONAR testpoint to check its capabilities with respect to the main SLATE project clusters.

perfSONAR

● Where maintained: The University of Chicago, University of Michigan, and University of
Utah each maintain a separate full instance of the perfSONAR toolkit dedicated to
SLATE.

● Granting/Revoking Access: The system administrators of each respective site
grant/revoke access to the underlying perfSONAR instance host OS and associated web
portal. The perfSONAR toolkit allows third party usage of the tools under constrained
circumstances. For additional requirements, respective system administrators may
make adjustments to handle active testing.

● Credentials:
○ Password: Each perfSONAR site has both web password credentials and an OS

set of credentials. These credentials are unique to each site.

PerfSONAR Web Admin (PWA):

The perfSONAR Web Admin software enables the management of multiple sets of tests to
respective perfSONAR testpoints.

● Where maintained: The perfSONAR Web Admin interface runs as a virtual machine at
Michigan State University..The WLCG monitoring group manages the virtual machine
and service configuration.

● Granting/Revoking Access: For modifications, members of the WLCG Throughput
Working Group adds/removes users from the perfSONAR Web Admin web portal
interface in collaboration with the SLATE PIs. The service supports fine-grained
authorization and individual accounts can be given management access for hosts, host
groups, test parameters and mesh configurations. SLATE personnel do not require
access to the underlying host.

● Credentials:
○ Password: The perfSONAR Web Administrator portal requires password

authentication, although it also supports x.509 credentials, and, if configured,
third party authorization (Google, GitHub).

Development Environment
The SLATE team maintains a development environment for the SLATE API. This development
environment also supports scale testing of applications in the transition from incubator to
production catalog.

14 perfSONAR: https://www.perfsonar.net/

Page 10 of 15

https://www.perfsonar.net/
https://www.perfsonar.net/

SLATE Development Virtual Machines
● Where maintained: The SLATE Development clusters reside at the University of Utah.

In addition, developers use local mini-slate instances on their local individual machines.
● Granting/Revoking access: The Puppet system instantiates people to have access at the

SLATE Development clusters for the team. The full SLATE team has ssh and kubectl
access to these clusters for trying out deployments and for testing versions of the SLATE
client and SLATE server.

● Credentials:
○ Password: The SLATE Development clusters require key-based ssh for access

by SLATE team members.

Continuous Integration/Continuous Deployment (CI/CD)

Jenkins CI/CD service

The SLATE project uses Jenkins for its Continuous Integration. The server resides behind
multiple levels of security controls with limited developer access. Please see Section 3 of
“Overview of SLATE Platform Internals and Security”

● Where maintained: The SLATE Jenkins server resides at the University of Chicago on
its virtual machine farm.

● Granting/Revoking access to the Jenkins server: Upon approval by SLATE PIs, the
University of Chicago SysAdmin team adds access to the members of the development
team. These members jump through a gateway box to access the virtual machine. The
University of Chicago SysAdmin team manages the gateway box in similar fashion. The
Jenkins web interface does not have access to the internet. SLATE team members who
have access utilize an ssh tunnel with an ssh key.

● Credentials for the Jenkins service:
○ Password: Jenkins uses a password-protected service account, currently one

assigned to a SLATE team member, to push images to the Dockerhub repository.

GitHub Actions

The SLATE project uses GitHub Actions to provide a “GitOps” look and feel to
development/deployment. The SLATE team uses GitHub Actions processes for both SLATE
infrastructure and for some SLATE catalog applications.

● Where maintained: GitHub Actions are part of the slateci GitHub repository.
● Granting/Revoking access: GitHub Actions utilizes the same processes as the GitHub

repository for granting/revoking access. For SLATE infrastructure builds, GitHub Actions
maps to a single designated user. The account should be a service account, i.e., used
only for this specific purpose, but is currently provisioned as a SLATE team member
account. The GitHub Action executes with this account using credentials stored in a
GitHub repository account that no one is able to read. This process prevents stealth
commits and requires an approval process.

Page 11 of 15

Individual Developer Tools and Prototype Tools

MiniSLATE

MiniSLATE is a personal development environment available for all application developers.
MiniSLATE provides a self-contained complete with a local copy of the web documentation. All
developers can download this codebase and develop their applications and workflow before
pushing to the SLATE platform for scale testing.

● Where maintained: The MiniSLATE development environment resides on GitHub .15

● Granting/Revoking access: Access to the MiniSLATE code follows the SLATE GitHub
repository access process. No access requirements exist for the local instances.

● Credentials:
○ Password: The containers utilize default username/pwd that come with the

images

SLATE-lite

SLATE-lite is a small lightweight version of SLATE that allows quick easy prototype deployments
for testing federated deployments in a virtual testbed or other testing environment.

● Where maintained: The SLATElite codebase resides on GitHub.16

● Granting/Revoking access: Access to the SLATElite code follows the SLATE GitHub
repository access process.

● Credentials:
○ Password: The containers utilize default username/pwd that come with the

images.

SLATE User Facing Services

Web presence

Website
SLATE maintains a web presence for documentation, security policies and a link to the project
portal. The web presence is a primary location of information for SLATE. There are no access
requirements for the website. The website codebase resides on GitHub and allows
appropriately authenticated team members to modify.

● Where maintained: The SLATE website resides on GitHub in the SLATECI repository17 18

similar to the applications.

18 SLATE website GitHub repository: https://github.com/slateci/slateci.github.io
17 SLATE website: http://slateci.io
16 SLATElite GitHub repository: https://github.com/slateci/slatelite
15 Minislate GitHub repository: https://github.com/slateci/minislate

Page 12 of 15

https://github.com/slateci/slateci.github.io
http://slateci.io
https://github.com/slateci/slatelite
https://github.com/slateci/minislate

● Granting/revoking access: Update access to the web site code follows the SLATE
GitHub repository access process. The web site contains links for all of the blog posts
as well.

● Credentials:
○ The website requires no authentication mechanism outside the development

repository which follows the SLATE GitHub processes.

SLATE User Portal
The SLATE User Portal allows a SLATE cluster administrator, a SLATE developer, a SLATE
application administrator and others to have a web based interface for installing applications
from the catalog. The SLATE portal also allows for a subset of monitoring and management
functionality for SLATE clusters.

● Where maintained: The SLATE portal resides on GitHub in the SLATECI repository.19 20

● Granting/revoking access: Access to the web portal code follows the SLATE GitHub
repository access process.

● Credentials:
○ Password: The SLATE User Portal requires institutional credentials through the

Globus web authentication/authorization mechanism for access to the portal web
pages.

○ Token: The SLATE User Portal has a privileged API token to pull out additional
information.

SLATE Command Line Interface (CLI)
The SLATE Command Line Interface provides a command line interface for managing SLATE
clusters. This interface runs on local machines to which a SLATE cluster administrator installs
the packages. The software is part of the SLATE Client / Server API codebase. For
development of the client, the SLATE team must authenticate with GitHub. The SLATE
development workflow utilizes Jenkins and GitHub actions to build components

● Where maintained: The code for the SLATE Command Line Interface (CLI) resides on
GitHub in the SLATECI repository.

● Granting/revoking access: Access to the SLATE CLI codebase follows the access to
GitHub process.

● Credentials: The SLATE CLI accesses the SLATE API service using the SLATE API
access token issued to the user through the SLATE User Portal, described above.

SLATE Sandbox
The SLATE Sandbox is a web interactive tool that allows users to experiment with the SLATE21

CLI without having to install anything on their local machines.

21 SLATE Sandbox: https://sandbox.slateci.io/
20 SLATE portal GitHub repository: https://github.com/slateci/slate-portal
19 SLATE portal: https://portal.slateci.io/slate_portal

Page 13 of 15

https://sandbox.slateci.io/
https://github.com/slateci/slate-portal
https://portal.slateci.io/slate_portal

● Where maintained: The SLATE Sandbox codebase resides on GitHub in the SLATECI
repository similar to the applications.

● Granting/Revoking access: Access to the web site code follows the SLATE GitHub
repository access process.

● Credentials: The SLATE Sandbox codebase requires SLATECI GitHub authentication
and authorization. The actual SLATE Sandbox web portal requires access via
institutional login or to sign up as a user.

SLATE Communication

Email Lists
● Where maintained: The various SLATE email lists all reside on Google Groups

(https://www.googlegroups.com). The current email lists are:
○ slateci@googlegroups.com
○ slateci-discuss@googlegroups.com
○ slateci-news@googlegroups.com
○ slateci-ops@googlegroups.com

● Granting/Revoking access: Those listed as the Google Groups Owners grant/revoke
access for different members. The Google Groups Owners consist of the SLATE PIs
and appointed senior SLATE staff members.

Real-time chat
● Where maintained: The SLATE real-time chat hosts on Slack .22

● Granting/Revoking access: The SLATE PIs and appointed senior members of the
SLATE team act as managers of the SLATE Slack channels.

Video content
SLATE utilizes YouTube for distributing training videos.

● Where maintained: The main video channel for SLATE hosts at YouTube.com23

● Granting/Revoking access: The main SLATE PI grants update access to the YouTube
channel.

Shared presentation, tutorial and file repository
SLATE utilizes a Shared Google Drive for storing internal documentation, tutorials,
presentations and paper links.

● Where maintained: The SLATE Shared Google Drive is a part of the University of
Chicago’s contract with Google and resides in Google’s cloud service

● Granting/Revoking access: The SLATE PI grants update access to this shared folder
and its folder hierarchy.

23 SLATE YouTube channel: https://www.youtube.com/channel/UCbJ654YHcv-4nni-8tzrINg
22 SLATE Slack channel: https://slateci.slack.com

Page 14 of 15

https://www.googlegroups.com
mailto:slateci@googlegroups.com
mailto:slateci-discuss@googlegroups.com
mailto:slateci-news@googlegroups.com
mailto:slateci-ops@googlegroups.com
https://www.youtube.com/channel/UCbJ654YHcv-4nni-8tzrINg
https://slateci.slack.com

Overleaf
SLATE utilizes Overleaf for submitted papers.

● Granting/Revoking access: The SLATE PI grants update access to this shared folder
and its folder hierarchy.

Page 15 of 15

